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1. SUMMARY

The ability to preUVt the coupled effects of complex transport phenomena with de-

tailed chemical kineticz, is criticp, in an understanding of turbulent reacting flows, in in-

proving engine efficiency, and in the study of pollutant formation. Since three-dimensional

models combining both fluid dynamical effects with finite rate chemistry are as yet coin-

putationally infeasible, the modeling of chemically reacting flows generally proceeds along

.: . two independent paths. In one case chemistry is given priority over fluid mechanical effects

and these models are used to assess the important elementary reaction paths, for exam-

ple, in hydrocarbon fuels. In the other case, multidimensional fluid dynamical effects are

emphasized with chemistry receiving little or no priority.

The goal in reacting flow computations is to be able to combine the effects of detailed

chemistry with complex fluid mechanics. During the past six months, our Phase I SBIR

-2. concentrated in this direction. We investigated several areas in which the modeling of

chemically reacting flows could be improved:

1. We incorporated detailed kinetics with complex transport in the solution of one-

dimensional diffusion flames.

2. We investigated flame sheet initialization procedures.

3. We considered more implicit solution algorithms for the highly nonlinear discrete equa-
tions.

As a result of the limited computer resources available under Phase I combined with

the computational complexity of calculating chemically reacting flows, we devoted a large

part of our effort to the solution of counterflow diffusion flames. Unlike models in which

the chemistry and transport phenomena are approximated by simplified relations, we in-

corporated both detailed finite rate chemistry and complex kinetic theory transport effects

in our inodel. We then investigated the use of a flame sheet model as a means of providing

improved starting estimates for the finite rate counterflow problem. Solution of the flame

shet and finite rate equations was accomplished with a combination of time integration

and Newton's method. Based upon the success of our study in one dimension, we directed

our efforts to two-dimensional problems. In particular, we generalized our one-dimensional

flame sheet model to two dimensions and, in parallel with this effort, we investigated ways

of improving the computational efficiency of the primitive variable implementation of the

TEACH code. The results of our Phase I research clearly indicate the feasibility of our

methodology in solving reacting systems with detailed transport and complex chenistry.

This methodology has potential applications to problems in turbulent reacting flows, en- -1

gin(e efficiency, commercial power generation units, and pollutant formation. -
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2. COUNTERFLOW DIFFUSION FLAMES

The flame type of most practical combustion devices is the diffusion flame. These
flames are important in the interaction of heat and mass transfer with chemical reactions in
ram jets, jet turbines and commercial burners. Three-dimensional models that couple the
effects of fluid flow with detailed chemical reactions are as yet computationally infeasible.
We can, however, obtain important information in practical systems by considering two-
dimensional configurations. The counterflow diffusion flame is one such configuration.

Experimentally these flames can be produced when a reaction zone is stabilized near
the stagnation point of two infinitely wide coaxial concentric jets (I (see Figure 1). Fuel
is emitted from one jet and oxidizer (air) from the other. Combustion occurs within a
thin flame zone near the stagnation point where the fuel and the oxidizer are in stoi-
chiometric proportion. Although the flow in the double jet experimental configuration is
two-dimensional, the mathematical model can be reduced to the solution of a system of
coupled nonlinear two-point boundary value problems along the stagnation point stream-
line. In this way we can investigate the effect of detailed chemical kinetics with complex
transport while still having a computationally feasible problem.

2.1 Problem Formulation

Our model for counterflow diffusion flames assumes the flow to be laminar, stagnation
point flow. Hence, the governing boundary layer equations for mass, momentum, chemical
species and energy can be written in the form

N(puxa) a(pvxo)
Ox + 'Y 0, (2.1)

o1 u + OV u +rp_ = 9(it-f~ au (2.2)

aYk a I kP11- x + pi- + YkVk,) - twkWk = 0, k = 1,2 ... , K, (2.3)

PuCP-x + PVCP - - A E -Pk'k- pk + Eli)Wh 02
9y O ay k=l a k=1

where a represents a geometric factor (a = 0 for cartesian coordinates and a = I for
cylindrical coordinates). The system is closed with the ideal gas law,

P = .(2.5)

In these equations x and y denote independent spatial coordinates in the tangential
and transverse directions, respectively; T. the temperature; Yk, the mass fraction of the
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kth species; p, the pressure: it and v the tangential and the transverse compolients of te
velocity, respectively; p, the mass density; iVk, the molecular weight of the kth spcies: IV.
the mean molecular weight of the mixture; R, the universal gas constant: A, the thermal
conductivity of the mixture; c,, the constant pressure heat capacity of the mixture; c ,.

the constant pressure heat capacity of the kth species; k, the molar rate of production of
the kth species per unit volume; hk, the specific enthalpy of the kth species; M the viscosity
of the mixture and Vky is the diffusion velocity of the kth species in the y direction. In
both configurations the free stream (tangential) velocity at the edge of the boundary layer
is given by u, = ax where a is the strain rate.

Upon introducing the notation
Uf~ U = 00 (2.6)

V = pv, (2.7)

the b)oundary layer equations can be transformed into a system of ordinary differential
equations valid along the stagnation-point streamline x = 0. For a system in rectangular
or cylindrical coordinates, we have

'+: dV

dy + a(1 + a)pf' =0, (2.8)
.i.! d df vd f'

dy (1 V- v dy + a(po - p(f')2 ) = 0, (2.9)

-+(pl'k) -V-y + ,kWk = O, k = 1,2,..., K, (2.10)
'K K

d I(IT) dT d
(l -yJ~ ck-- - Z kPk ,Vk-jT - Z li'k'Vkhk = 0. (2.11)

k-I ay k=l

The boundary conditions for the double-jet configuration at y = -00 are given by

V = V-0, (2.12)

r,:.~FY (2=P ). 13 )

P-.

k-.=Yk k=1,2 K' (2.14)

T = T-2.15

anl at y x by

f 1, (2.16)

1k= Yk, k = 1.2-. . (217

J. 3



ST =To.(2.18)

The mass flux. temperatur and species mass fractions (V- . T-, Y_ ) at the fuel jet

are specified quantities ,s are the temperature and species mass fractions (T_, and Yk)
at the oxidizer jet.

2.2 Flame Sheet Model

'Despite the outwardly simple form of the counterflow equations, the deternination of

a "good" initial solution estimate can be difficult. The difficulty is due to the exponential
dependence of the chemistry terms on the temperature and to the nonlinear coupling of
the fluid and the thermochemistry solution fields. In previous work, we focused our efforts
on the solution of adiabatic and nonadiabatic premixed laninar flames by adaptive finite

difference methods [2-3]. In these problems cubic polynomials and Gaussian shaped profiles
were used as starting estimates for the major and minor species on an initial coarse grid.

These approximations were often sufficient to bring the starting estimates into the domain
of convergence of Newton's method.

In adiabatic and nonadiabatic premixed laminar flame problems the conservation of
mass and momentum reduces to the specification of a constant mass flow rate and a
constant thermodynamic pressure [2-3]. Hence, thermochemical considerations play a more

important role in these pro)lems than do fluid dynanical aspects. This is not the case
in counterflow diffusion flames. In particular, there is a strong coupling )etween the
fluid dynamic and the thermochemistry solution fields in these flames. We have found

"-: that. although the solution l)roce(lure used in premixed laminar flame pro)lems can work
in selected coulinterflow cases, it does not provide a sufficiently robust or efficient -tarting
e-tiniate from which Nwton*' method will converge. In addition, the relaxation to steady-
state (or at least until the solution is within the convergence domain of Newton's inethiod) is

- very slow. The importance of these flames in turbulence modeling and in the determination
of chemically c(,ntrolled extinction limits, however, necessitates the development of an

Sefficient -tarting proc('re. We couple the appropriate equations of mass andi momentum
with a Shiva-Zeldlovich equation to provide flame sheet starting estimates for the mass
flux in the tran'vcrse direction, the similarity function, the temperature, and the stable

major pec ivs in th, flare.

Our .,tarting pt iut is t he assumption that the fuel and the oxidizer obey a single overall

irrevers ible reactio)n (of the type

Fuel (F) + Oxidizer (0) - Products (P), (2.19)

in the presence of anl inrt g;L, (N). We have

z'.F + t,()0 - u'vP. (2.20)
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where VF, Vo and vp are the stoichiometric coefficients of the fuel, the oxidizer and the
product, respectively In addition, we neglect thermal diffusion and assume that the ordi-
nary mass diffusion vw !ocities can be written in terms of Fick's law, that is

Dk dYk
Vk -- k dy, k = 1, 2,...., K, (221)

where Dk is the diffusion coefficient of the kth species with respect to the mixture. We
also take c = cP. to be constant. With these approximations we can write

dV
+ a(1 + a)pf' = 0, (2.22)

d( ) -I f + a(p. - (f))= , (2.23)

d ( dYF'\ _ dF

pDF V- - F 1w = 0, (2.24)

d / dyp dy 0d (pDo - -Vd -Wovoti,= 0, (2.25)dy dy / dy

d (pDp- d -V + Wpvpt = 0, (2.26)
d ( dy dY
d pDN V - - o, (2.27)

dy dy / dy
d (A dT) - dT + (WFVFhF + Wo vo h o - Ivphp) _ 0, (2.28)

dy cp dy dy C
where

-F - , (2.29)
VF V0 Vp

is the rate of progress of the reaction and where we have made use of the fact that
=1 Y V = 0.

If we introduce the heat release per unit mass of the fuel Q where
___ Wp Up

QW=°hF + ho - W hp, (2.30)Q =h +WFVF WFVF

and if we assume that the Lewis numbers

A ALeF = -Leo = (2.31a)PDFCP pDc r "

A A
Lep = LeN = (2.311b)

pDpep pD-c"

I



are all equal to one, then each of the Shvab-Zeldovich variables

Zp = YF - I -o+ + L(T- T.), (2.32)

= - Y0, + LPWo o (T - T.), (2.33)

Q WF-F

= - Y,,- (T - T.), (2.34)Z p-- p Ytoo Q W F VF

ZN = YN --YN ,, (2.35)

satisfies the following differential equation

d( dZk dZkPDk D y, - V-- =0, k = F,O,P,N, (2.36)
dy dy dy

with

Zk(-oo) = Zk_", (2.37)

Zk(oo) = 0, (2.38)

for the double-jet problem where Zko is constant. As a result, all of the Zk are propor-
tional to each other and to the conserved scalar S which satisfies

d _ dS vdS

\ dY/ dy 0 (2.39)

S(-0o) = 1, (2.40)

S(oo) = 0, (2.41)

where D is a diffusion coefficient.

From (2.36) and (2.39) we can write

Zk = Zk-0 0 S(y), k = F,O,P,N. (2.42)

Equation (2.39) can be coupled with equations (2.22) and (2.23) to obtain profiles for 1'. f'
and S. To complete the specification of the starting estimate, we must be able to recover
the temperature and the major species profiles from the conserved scalar. If we utilize the
result in (2.42) along with the fact that in the flame sheet model fuel and oxidizer cannot
co-exist. we can derive relations for the temperature and major species on either side of
the reaction zone. On the fuel side, we have

T= T-,S + T+ Y°-WFVF (1-S), (2.43)
1 Cp WOLIO

W YF S+YO.FVF (S-1), (2.44)

6l'r = YF + '..+ o -.Wo.

S. . . - ' """"' ' "+"" "": '" " ;4 "+ '" +" '' . . .'. " " " , ' ,".,, "- +,,c+ " ' ".- ,-.,., "+ ' ' '
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10= 0, (2.45)

wP (1-s), (2.46),1 v = to.Wovo

and
YN =I (1 - S) + YN__ s. (2.47)

On the oxidizer side, we have

T = To(1 - S)+ [-Y,-_OO + T"-] S, (2.48)

YF = 0, (2.49)

10 = Yo.(1 - S) - YFr_ V° S, (2.50)

.P -= rPF- S, (2.51)
WFVF

and

YN = YNo. (1 - S) + YN- S. (2.52)

The diffusion coefficient and the viscosity can be determined by specifying a reference

Prandtl number and a transport relation for the viscosity. In particular, we let (Pr)r,!-

0.75 (air) and

A. = A0 ( (2.53)

where r = 0.7, To = 298 K and p0 = 1.85 x 10- 4 gm/cm-sec is again a reference value for
air. The scaled heat release parameter Q/c , = AT can be determined from the heat of

combustion of the system and a representative heat capacity.

2.3 Method of Solution

Solution of the governing equations proceeds with an adaptive nonlinear boundary
value method. Our goal is to obtain a discrete solution of the governing equations on the

mesh .M. where

yo < y < ... < ym =(2.54)

, - With the continuous differential operators replaced by finite difference expressions, we

convert the problem of finding an analytic solution of the governing equations to one of

finding an approximation to this solution at each point of the mesh M. We seek the solution

U; of the nonlinear system of difference equations

'4 .F(U,) =0. (2.55)

7



For an initial solution estimate U' that is sufficiently "close" to Uh*, the system of equations

in (2.55) can be solved by Newton's method. We write

j(Uk) (Uk+l - Uk) = -IkF(Uk), k = 0, 1 .. (2.56)

where Uk denotes the kth solution iterate, Ak the kth damping parameter (0 < A < 1) and

,J(U&) = OF(Uk)/DU the Jacobian matrix. A system of linear block tridiagonal equations

must be solved at each iteration for corrections to the previous solution vector. In the
counterflow diffusion flame problem, the cost of forming (we use a numerical Jacobian) and

factoring the Jacobian matrix can be a significant part of the cost of the total calculation.

In such problems we apply a modified Newton method in which the Jacobian is re-evaluated

only periodically [4].

The solution of combustion problems, such as the counterflow diffusion flame, requires
. "that the computational mesh be determined adaptively. Many of the methods that have

been used to determine adaptive grids for two-point boundary value problems can be

interpreted in terms of equidistributing a positive weight function over a given interval

[5,6]. We say that a mesh M is equidistributed on the interval [-L, L] with respect to the

non-negative function W' and the constant C if

S I dy =C, j= o, 1. m - i. (2.57)

We determine the mesh by employing a weight function that equidistributes the differ-

ence in the components of the discrete solution and its gradient between adjacent mesh
points. Upon denoting the vector of N = K + 3 dependent solution components by

r [U1 . U/'2 .. UV IT we seek a mesh .M such that

fi -dy' dy < 61 max Uj - min UI (2.58)

/ y -L<y<L L<y: L 1, 2 N.....

an(1

,.,+, d2U, dti mm dU j = 1,2..... m - 1
::::::[d-f [ dy < -,[max min (2.59)

Y -L<y<L dy -L <yL -y 1. 2_ A

where 0 and - are small numbers less than one and the maximum and minimum values of U,
Me.h. (nl dy are obtained from a converged numerical solution on a previously determined

The coarse to fine grid strategy eliminates many of the convergence difficulties asso-

ciated with solving the governing equations directly. However, convergence of Newton's

m ethod on the initial grid requires a "good" initial estimate for U °. We can improve the
flame 'heet starting estimate by applying a time-dependent starting method on the initial

8



orid. We remark that, fundamentally, there are two niatheinatical approache,- fr -,lvi

one-dimensional flame pro Ilenls - one uses a transient imethod and the other -,,. 11w

qteady-state boundary value problem directly. Generally speaking, the t ran-ieilt lie!h

ods are robust but compltationally inefficient compared to the boundary value ii-th, ,t-

which are efficient but have less desirable convergence properties. Most of the inierictal

techniques that have been used to solve flame problems have employed a tinle-plendent

method. Variations of this approach have been considered by a variety of researchers (,see.
e.g.,.{7-11]). In these methods, the original nonlinear two-point boundary value prolkem i-

converted into a nonlinear parabolic mixed initial-boundary value problem. This is accomi-

plished by appending the term O(.)/dt to the left-hand side of the conservation equations.

This results in a semidiscrete set of equations

dU
at = F(U),

with appropriate initial conditions. If the time derivative is replaced, for example. by a
backward Euler approximation, the governing equations can be written in the form

= F(Uj+,) - Uj) (2.61)

where for a function g(t) we define g" = g(tn) and where the time step r"+ i = tr+ - t".

At each time level we imust solve a system of nonlinear equations that looks very similar

to the nonlinear equations in (2.55). Newton's method can again be used to solve this

ystein. The important difference between the system in (2.55) and (2.61) is that the

diagonal of the steady-state Jacobian is weighted by the quantity 1/"n+l . This produces a

better conditioned systeni and the solution from the nth time step ordinarily provides an
excellent starting guess to the solution at the (n + 1 )st time level. The work per time step

is similar to that for the modified Newton iteration, but the time-like continuation of the

numerical solution produces an iteration strategy that will, in general, be less sensitive to
the initial s;tarting estimate than if Newton's method were applied to (2.55) directly. As

a re,,sult, when we ultimately implement Newton's method on the steady-state equations
directl. we obtain a converged numerical solution with only a few additional iterations.

This time-dependent starting procedure can also be used on grids other than the initial

2.4 Numerical Results

\\e applied the flame sheet starting estimate to a dilute(1 methane-air flame ii tih'

cliniiIrical double-jet configuration (see Figure 1). As we discussed in Section 2.2, the

flaime sheet model provides initial solution profiles for the mass flux in the transverse
dlireti n. V. the similarity function, f', the temperature. T, and the major species, i.e.

9



CH 4 , ()2, N2 , (0 2 and CO. Gaussian profiles were used for the minor species. The detailed

kinetics mechanism used in the calculations is listed in Table 1.

After getting the flame sheet starting estimate, we solved the full set of governing

equations in a two-step procedure. Specifically, we determined a solution to the mass,

momentum, and species equations with the energy equation replaced by the flame sheet

temperature profile. This procedure is similar to the two-pass solution method used in

the solution of adiabatic premixed laminar flames 13]. The fixed flame sheet temperature

solution (Tout) was then used to obtain a solution to the full fluid dynamic-thermochemistry

model (Ti). This procedure helped to reduce both convergence difficulties and total CPU

time.

In our problem, the separation distance of the two jets was 1.4876 cm. The boundary

conditions at the fuel jet were given by

V = 2.8 x 10-2, (2.62)

f- 1.216, (2.63)

.= 0.598, 1 = 0.402, Yk/c1 4,N 2 = 0, (2.64)

T -= 294 K, (2.65)

and at the oxidizer jet by
j= 1.0, (2.66)

1- 0.18, Y = 0.82, o = 0, (2.67)

T = 294 K. (2.68)

The nass flow rate was in units of gm/cm 2-sec and the densities of the fuel and the oxidizer

mixtures w(re use(d in obtaining the value of the similarity function at the fuel jet. The

*umass flow rate boundary condition corresponds to a fuel duct velocity of 35 cm/sec. The
-I* train rate used in the calculation was a = 40 sec -

A ;olution was obtained on a nonuniform grid consisting of 38 grid points. This
,lution was theni used as the starting estimate for the fixed temperature solution. One

hundred adaptive time steps were taken to help bring the solution within the domain of
convergen(ce of Newton's method on the 38 point grid. After the time steps, .Newton's

miethod converged with mly one iteration. Once this solution was obtained, the mesh was
refined and a solution was calculated on the finer grid. This procedure continued until the

adaptive mesh criteria were satisfied. The refined fixed temperature solution was then used

as the starting estimate for the complete fluid dynamic-thermochemistry solution. Two

adlitional grid refinements were performed to obtain a final solution on a grid consisting

of 65 nonuniform points. On the refined grids Newton's method converged after applying
Oxlly 10-20 time steps. The mesh spacing was such that 600 equispaced points would have

10



%7 r . - ......u~u lj- W U-rr W- W-N, W V V WN' . - I'd if

been needed to obtain comparable accuracy. The total CPU time for the entire )rocedure
was approximately three hours and 40 minutes on a V-AX-8600. Approximately 6 CpIT
seconds were needed for the flame sheet calculation, 130 minutes for the Tut calculation
and approxilately 90 minutes for the Tin solution. In contrast, we were unable to obtain a
complete Ti, solution for this problem when the premixed laminar flame starting procedure
was employed.

In Figure 2 we compare the flame sheet temperature profile with the calculated finite
rate temperature profile. We observe that the agreement is generally quite good. Similar
results are illustrated in Figures 3 and 4 for the similarity function and the normal velocity.
The flame sheet model is able to predict adequately the location of the stagnation point
along with the *'double peak" velocity profile.

With the success of the flame sheet starting procedure, we then compared the results
of our detailed chemistry model with the experimental measurements of Seshadri [1]. In
Figure 5 we illustrate the experimental (circles) and the calculated (solid line) temperature
profiles for a problem with similar input conditions as those described in (2.62)-(2.68).
We observe that excellent agreement is obtained for the general shape of the profiles
as well as for the peak temperatures (maximum experimental = 1691 K and maximum
computational = 1680 K). On the rich side of the flame, however, the temperature profiles

show some discrepancy. These differences are due most likely to the neglect of ('2 chemistry
in the chemical kinetics mechanism. In Figures 6 and 7 we compare the experimental
and computational results for the stable major chemical compounds with the physical
coordinate as the independent variable. The solid lines represent the numerical calculations
and the points represent the experimental measurements. The profiles reveal excellent
agreement for the mole fractions of CH4, 02, N 2 , H20 and (02. The profiles for 70 and
H2, however, show some discrepancy. The differences between the experiment anl the
Calculations are due again to the neglect of C2 chemistry in the calculations. Minor species
an(l radicals are illustrated in Figures 8 and 9.

3. FLAME SHEET MODEL OF AN AXISYMMETRIC DIFFUSION FLAME

The mod)(leling of a-xisynimetric (liffusion flames can be reduced to the soluti m f a set of
cotplvl nonlinear boundary value problems. In these problems we desire solution profiles
to a., many as several dozen species concentrations in addition to the temperature and the
velocity fields. Although axisymmetric flames are important in combustion applications.
they have received relatively little attention in theoretical flame studies. Part of this

nieglect is due to the two-,linelisional nature of the problem coupled with the complexitie.1,
a,,(Liate ' with the combined effects of transport phenomena and chemical )ro('esses. In
the axiynmmnetric (diffusi,)'n flame we consider, a fuel jet discharges into a laminar air stream.

The flane, can be either confined or unconfined. In both cases the tubes tirmgh which
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the fuel and the oxidizer flow are concentric and have radii R, and Ro, respectively. In
both configurations the two gases make contact at the outlet of the inner tube and a flame
resembling a candle results.

,, .:. In the second part of our Phase I SBIR we investigated the generalization of our one-
dimensional flame sheet model to two dimensions. The goal of this work was to provide

multi-dimensional starting estimates for the full chemistry-fluid dynamic model that will
be studied in Phase II. In an effort that complements the one described in Section 4, we

used a stream function-vorticity as opposed to a primitive variable formulation. In this
way the pressure (and the continuity equation which is not in the standard elliptic form

of the remaining equations) could be eliminated from the model and we could reduce the
size of the system to be solved.

NWe define the vorticity as the amount of counter-clockwise rotation in the fluid. We
have Dvr 0 v3

av, vz..(3.1)

The stream function 0' is used to replace the radial and axial components of the velocity
vector by a single function. It is defined in such a way that the continuity equation is

identically satisfied. We have

P1 (3.2a)

9prv = (3.2b)
.

Our flame sheet model follows the procedure we discussed in detail in Section 2.2. We
again assume a single global irreversible reaction. The diffusion velocity is given by Fick's
law and the heat capacities are assumed constant. Our model can be written in the form

a9 / I+ a I l

Oz rp az + r Dr r -,

2r2

OZ 0 -r Or Or r
")+ YL-Y



(1- ")+ " (1- ) - (rpDo ,oi)-r _49 ir i i o-r

a (rpD e _a ) rWo vo ti = 0, (3.6)

'9 (Yp"' + y ( pDp O9 ]
jr) az (z ar ) r - r-

+ rpDp ) + rWpvpwb = 0, (3.7)

9 ( Y 4 + ( ( YN ) rpDN N-Or (9 -a a ~

n rpDlv az = 0, (3.8)

rata~ at57z at Tand [ : ~ ~
c~i-iT i--49T) -aA-- IT

,9z 49r / ar (9z, a9r a9r az az
IVFVFhF + Wovoho - Wp=php .

-r 0, (3.9)cp

where w) is again the rate of progress of the reaction. If we follow the argument in (2.30)-

(2.31), we find that each of the Shvab-Zeldovich variables

ZF = YF - YFo + £P(T - T.o), (3.10)
Q

Z0 Y-Y 0  ~oLe(T -Too), (3.11)Zo = YO - Yooo + !- WrV (T- .)

QW FV (T - T.), (3.12)

ZN = YN - YN , (3.13)

satisfies the differential equation

C (Zk)V) 4 c(c) (rpD Zk)
49r e),' z aZ -r Or r

'z rpDk =0, k= F,O,PN. (3.14)

One can show that all of the Zk are proportional to each other and to a conserved scalar

S that satisfies an equation similar in form to (3.14). Relations for the temperature and

the major species follow exactly as in Section 2.2.

We applied the two-dimensional flame sheet model to an unconfined axisymmetric

methane-air flame with an inner jet (fuel) radius of 0.254 cm and an outer jet (air) radius
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of 2.54 cm. The velocities of the fuel and the oxidizer were 10 cm/sec and the temperature
of the two gases was 298 K. Utilizing a generalization of the solution procedure discussed
in Section 2.3, we obtained solution profiles for the temperature, major species and the
velocities on a 21 x 41 grid. Results of the calculations are illustrated in Figures 10-15.

4. PRIMITIVE VARIABLE METHODS IN TWO DIMENSIONS

In this section we report on experimental modifications to the TEACH [12] code for
solving the conservation equations of reacting flows in primitive variable form. We ex-

,J, amined primarily the CPU-intensive SIMPLE (Semi-Implicit Method for Pressure-Linked
Equations) algorithm [131 for handling the momentum-pressure coupling, which lies at
the heart of TEACH, and to which TEACH reduces in the laminar, incompressible, single-
component case.

TEACH is a multidimensional steady-state compressible flow algorithm based on a
low-order control-volume discretization of the primitive variable equations in conservation
form over staggered, orthogonal, tensor-product grids. In addition to the continuity and
momentum equations, a number (in principal arbitrary) of conserved scalar equations can
be accommodated by TEACH. These may include an energy equation, multiple specie equa-
tions, and the empirical k - ( turbulence model, which supplements the laminar equation
system with two extra transport equations of the same generic form while modifying the
laniinar diffusion terms in the remainder of the equation set.

A large. sparsely coupled set of nonlinear algebraic equations results. The nonlineari-
ties arise directly from the advective terms and the source terms, and indirectly through

temperature-, pressure-, and composition-dependent laminar transport properties and
thermodynamic coefficients. and the velocity-dependent turbulent transport properties.
A multistage variation of the block Gauss-Seidel method is used to solve this nonlinear
;vstem. The outermost stage consists of cycling between a Poisson-like pressure correction

J (pilation (derived from a truncated substitution of the discrete momentum equations into
the discrete continuity equation, which is thus eliminated) and the transport equations
for all of the other unknown fields. Within this latter block, the equations are relaxed

I",-callv, field-by-field. Within the sub-blocks at the level of the individual fields, the
iupdates are computed in a block-line fashion so that a tridiagonal matrix is the largest
implicit aggregate in the overall calculation. In practice, under-relaxation of the updates
is necessary.

Variations of the TEACH code abound. The version with which we make our com-

parisons is a revision obtained from one of the original authors, as described in [12]. Our
principal test problem for this section is the two-dimensional, incompressible, axisymmet-

rc. noureacting flow in a suddenly expanded laterally heated channel, the hydrodynamics
(,f which are described in [14]. This is the test problem described in [12] and slip)lied with

14



the official machine-readable copy of the code, being bound up therewith in a non-modular
way.

4.1 Advantages and Disadvantages of TEACH

As a base on which to build a detailed-kinetics reacting flow solver, TEACH has several
advantages, which motivated us to improve its convergence properties:

e The pressure, which is in practice one of the fields of greatest interest, is readily
available as one of the unknowns of the problem, whereas the pressure is eliminated in
a stream function-vorticity formulation.

9 The TEACH algorithm generalizes in principle to three dimensions, the space in which
all real engineering problems lie.

e The widely used k - c turbulence model is built in.

* The wide user base of TEACH-like codes would seem to portend a high interest in the
ultimate production version of the reacting flow solver, and relative ease of transfer-
ability to the interested community.

There are also some major disadvantages:

" TEACH has many parameters (such as underrelaxation factors and iteration limits)
that are difficult to tune efficiently, and poor diagnostics by which to determine -con-
vergence

" Convergence is slow. being asymptotically linear at best, even for "easy" problems
(those with few species. the conservation equations for which are dominated by the
linearly implicit part of the source term, or by advection or diffusion).

" Convergence is unreliable in "difficult" problems (those with many species, the con-
servation equations for which are dominated by parts of the source term not treated
implicitly).

" There are no convenient data structures built into TEACH to assist the user in organiz-
ing the large volume of physical data (kinetic, transport, and thermodynamic) which
lutist be supplied in realistic detailed modeling.

Because of these disadvantages, much of our work in preparation for detailed modeling
in two dlimensions has been carried out in a context other than the TEACH code, as
described above. However, since there is ultimate interest in a primitive variables staggered
grid code, we addressed the first two disadvantages to TEACH, as described in the balance
of this section.

4.2 Modifications of the TEACH Code - Outer Loop

15
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The weakness at the heart of the TEACH algorithm is in the solution of the discrete
nonlinear system. Linearization by decoupling at the field-by-field level provides only a
linear convergence rate for the outer iteration. Furthermore, the degree of underrelaxation
found necessary in practice causes this rate to be slow. The most natural modification was
to implement a Newton-like algorithm for the outer loop.

. Newton methods are desirable for their asymptotically superlinear convergence rates.

They have the big disadvantage compared to simpler iterative schemes, such as that of
6. .' plain TEACH, that they require formation and factorization of a Jacobian matrix. We

examined a recently developed Jacobian-free Newton-like method known as the nonlinear
generalized minimum residual method (NLGMR). A precursor of this method may be
found in [15]. More recently, very impressive results have been obtained with NLGMR in
the computational fluid dynamics context [16]. The incorporation of NLGMR into TEACH
can be accomplished in a very modular fashion, leaving most of the original code fully
intact. To be specific, the NLGMR algorithm is inserted between the control driver of

- . TEACH and the calls to the field-by-field solvers.

Let the action of one outer iteration of the TEACH algorithm be denoted by

S- M(U), (4.1)

where the vector u G RV represents the discrete unknowns of all of the fields (i., U, p,
etc.) and .11 is the nonlinear mapping that produces the (n + 1)st iterate from the nth. In
the TEACH code, .l represents one pass through the routines CALCU, CALCV, CALCP etc., in
their proper cyclic order. The converged solution u. is the root of the system of nonlinear
eNilations

F(u) = u - AM(u) = 0. (4.2)

With the specification of the initial iterate, U(, the TEACH algorithm has the form of a

nonlinear block Gauss-Seidel method for F(u) = 0.

NLGMR provides a means of accelerating the TEACH iterations as follows (see [16]).
- . -Throughout we denote by J(u) the Jacobian matrix of F evaluated at u. When there is no

a .ll)iguity, J(u) will be denoted simply by J. Suppose that ,,, is the current ap roximation
- and that we wish to find a new approximation of the form U+ " + 6.

We write 6 in the form

m

",6 Z a', (4.3)

."where the c, e R 'v are in orthonormal vectors, the specification of which N ill be given
shortly, and the a, are unknowns to be determined at each step. Ideally, we would -arry
out the minimization of

][F(i(. + 6)11
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* over all vectors 6 to get the new iterate u,,+1 ? u,, + b. Instead of solving this nunerically

(lifficult problem directly, we can linearize F about u,, by writing F(u. + 6) :- F(u) +

.(i,,) alnd seek to minimize

JIIF(u.) + J611
over all vectors 6 of the form (4.3). If we choose the u, to form an orthonormal ba.sis for the

Krylov subspace based on the Jacobian, namely span {t,,, JV 1 , J 2t, .... J j, whert.
t,, = F(u,,)/1fF(u.)[. then this minimization can be carried out by performing in steps of

the GNIRES algorithm [17] applied to the linear system

J6 = -F(u,), (4.4)

with the initial iterate b = 0. Note that an exact solution of (4.4) would yield the Newton

direction J1 F(,,). We leave most of the details of GMRES to the references; however, we
note several of its important properties. If m = N the method, though iterative in nature.
delivers the exact solution of (4.4) and is thus a strict Newton's method in this limit. If
the Jacobian is suitably conditioned, however, GMRES usually converges for ti K< ',

resulting in considerable savings over the linear algebra expense of a direct elimination

Newton algorithm. For sufficiently large n, its storage requirements are roughly half
those of theoretically equivalent Krylov subspace methods, such as GCR and ORTHODIR

18 1, and its CPU time requirements are about one-third less. Finally, the method cannot

break down before finding the solution (in the absence of roundoff error) for arbitrary

nonsvmuxetric indefinite matrices J.

Perhaps the most important aspect of the NLGMR algorithm described above is that
the .Jacolbian matrix J is never needed explicitly. The only operations using the .Jacobian

matrix .J that are actually required in the implementation are matrix-vector multiplications
of the form w = Jr. which can be approximated by finite differences of F, viz..

J(u)v -F(,, + hi,) - F(u)h u), -(4.5) h

%where it is the point where the Jacobian is being evaluated and h is some carefully choseln

-4mall scalar. In comparison to the typical cost of evaluating F(u), which re(juires one

apl)lication of the mapping .I(it), there is very little overhead in the NLAIR algrithm.
and its overall cost can be estimated in units of F-evaluations, which are the saime as plaii
TEA CH outer iterations.

An unfortunate and well-known flaw of Newton's method is that the domain of (on-
vergence is typically quite small. In practice, NLGMR invariably diverges when applied
to TEACH in the form (4.2). In contrast, the TEACH iterations can often be stabilie d Iby
-ufficient underrelaxation if one can afford the price of the concommitant slow convergence.
A reliable cure for NLGMR. following [16]. is to introduce damping into F(u). that i,. to

replace (4.2) at each step with

F(, - - A)M(,) -u)AM
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where A is a damping )arameter to be selected adaptively, 0 < A < 1. Selecting A 0

corresponds to Newton's method. Selecting A = I corresponds to ordinary, unaccelerated

TEACH. If A is held at 1 until the TEACH iteration residuals begin to exhibit monotonic
convergence, a subsequent power-law decrease in A (as a function of iteration count) gen-
erallv brings about asymptotically superlinear convergence. To be specific, let p,, denote
some scaled Euclidean norm of the components of F(u,,), and let it denote the iteration

level at which the monotonic residual decrease criterion is first satisfied. (In practice.
we have been requiring an absolute decrease for five successive iterations, because of the
notorious oscillatory convergence profiles of plain TEACH.) Let pn denote the residual at
iteration f5. Thereafter. we take

A. = (p./p,)2 . b (4.7)

where b is a tuning parameter governing the rate of decrease of A, supplied by the user.
Typically, we choose b in the range 0.7-0.8, which promotes a fairly rapid transition from
plain TEACH to Newton's method once the tail of the TEACH iterations has been reached.

The pre-exponential factor is designed to hasten adaptively the transition to Newton's
method according to the rate of decrease of the residual.

In Figures 16-19 we show the type of savings that are achievable by wrapping NLGMR
around TEACH in this manner. The four figures are in two pairs-one pair (Figures 16
and 17) for a 16 x 16 grid (14 interior cells), and one (Figures 18 and 19) for a 30 x 30 grid
(28 interior cells), or twice the resolution of the first. Each pair contrasts the convergence

history f plain and NLGcMR-accelerated TEACH for a laminar version of the standard test
problem b~y plotting the mass and momentum equation residuals (solid curves - individually
Ilondlienwlionalized ,; in the original TEACH) and the composite NLGMR residual (dashed
curve) against the number of evaluations of M(u). In the 16 x 16 case, the monotonically
le'crea.,ing tail is reached at 33 function evaluations. Thereafter, plain TEACH requires 105

outer iterations (co-sting one function evaluation each) to reach the convergence criterion
,of a relative residual reduction of 10-8, whereas NLGMR-accelerated TEACH requires only
7 additional oluter iterations (costing a total of 67 function evaluations). Each plateau in
the NL U.R plots rel)resents one outer iteration during which several GMRES steps may
he required. In the 30 x 30 case, the monotonically decreasing tail is reached at 60 function
evaluatious. Thereafter, plain TEACH requires 153 outer iterations (costing one function
evaluation each) to reach the convergence criterion of a relative residual reduction of 10'.
whereasL NL(MR-accel..rated TEACH requires only 9 additional outer iterations (costing a
total of 108 function evaluations). In terms of the overall number of function evaluations

from ,tart to finish NL(NIR allows reductions of 28% and 21%, respectively. In no case
was a Krylov ,ul)space of dimension higher than 20 required.

This is not a dramatic improvement; on the other hand, it has been achieved with
-.virtually no extra programming cost to the user, and some possible side benefits of NLGMR"_.:

.. *.,:
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are as vet unexplored in connection with TEACH. For instance, in [16] the authors found

it possible to play loosely with the tuning parameters of an algorithm being accelerated

by NLGMR, since NLGMR had a stabilizing effect on the overall iteration. Hence, some

of the uncertainty that accompanies the selection of TEACH parameters for problems of a
previously unexplored scale may be relieved.

W\e conclude that the damped NLGMR technique provides a useful enhancement to

)laiik TEA CH in its present state of development. Further efforts to successfully marry these
two algorithms (exogenous to our AFOSR-sponsored reacting flow work) are currently

; -underway by SCA consultants.

4.3 Modifications of the TEACH Code - Inner Loop

In view of the preservation of the TEACH inner loops (as embodied in the routines
CALCU, CALCV CALCP, etc.) in the NLGMR-enhanced version described above, it was natural
to look for further savings in solving the system of linear equations for the updates to each
field. Labeling each of u, v, p, etc. by the generic field 0, in turn, these linear systems at
each inner iteration of the TEACH algorithm nominally have the form

apop - > ak k + .sp, (4.8)
k

at each point P of the grid on which o is defined, where the sum extends over the four
neighbors of P. The coefficients arise from the control-volume discretization of the advec-
tion. (iffusion and source operators using the "best available" velocity and property data.
Because the advective fluxes are of hybrid upwinded form, all of the ak are nonnegative.
Because of the conservation form of the discretization,

(ap E >ak. (4.9)
k

In fact. the field updates are generally underrelaxed due to the nonlinearities hidden
in the c(efficients of (4.8). Thus, if 0* represents the vector of unknowns calculated from
(4,8), where the coefficients are based on the nth iterate 0", then

+ = Ito* + (1 - ,)o1". (4.1()

where p. < < p < I is an iinderrela.xation parameter. which may be set differently for
PaCh field. (Typical values of It are 0.5 for the velocities and 1.0 for the pressure. with the
other conserve(l scalars somewhere in between.) If the degree of underrelaxation dtesired
in (4.10) is known a priori, it may be built into the coefficients of a modified version of
(4.8) with advantage. In fact, the TEACH routine block-line solver LISOLV actually solves

a,6 akOk + .s,, (4.11)
k
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directly for 0"', where a;, - ap/p and s* sp + (1 - *)a &. This is algebraically
equivalent to the two-step process (4.8)-(4.9), but is numerically advantageous, because
it increases the diagonal dominance of the linear system, thus enhancing the convergence
rate of the block-line iterative solver.

For systems of appreciable size, GMRES with some form of approximate factorizationEu preconditioner is among the best methods for problems of the form (4.8). Hence, the block-
line solver LISOLV was replaced with several differently preconditioned GMRES methods
from PCGPAK (19]. The results were disappointing, with GMRES typically requiring 2.0

S.-'-. to 2.5 times as much CPU time as the block-line solver for the same degree of residual
reduction on a 16 x 16 grid with the full turbulent test problem mechanism in place. The
conclusion of this brief exercise is that for the amount of underrelaxation already built

into TEACH to stabilize the outer nonlinear iterations, the most elementary linear solvers
perform most efficiently for the inner iterations. Therefore, we recommend retaining LISOLV
in conjunction with NLGMR- TEACH.

5. CONCLUSIONS

We have demonstrated the feasibility of combining detailed transport phenomena with
complex chemistry in the solution of chemically reacting flows. We have illustrated the
effectiveness of flame sheet initialization procedures and a time integration-Newton non-
linear equation solver in the modeling of a counterflow diffusion flame. We have also made
improvements to the outer iteration of the primitive variable TEACH code. Our goals in a
Phase II SBIR will be to generalize these ideas to enable the efficient solution of axisym-

metric (laminar and turbulent) diffusion flames. Based upon our Phase I results. we are
confident that our approach will be successful.

S...2
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TABLE I.

Reaction Mechanisn Rate Coefficients In The Form kf = ATdexp(-E/RT).

are moles, cubic centimeters, seconds, Kelvins and calories/ nolt.

REACTION A l E

1. OH 4 + .\1 COH 3 + H + Al 1.OOE+17 0.000 86000.
2. CHI + 02 CH + HO 2  7.90E+13 0.000 56000.
3. CH, + H C H3 + H 2  2.20E+04 3.000 8750.
4. ('H 4 + 0 (H 3 + OH 1.60E+06 2.360 7400.

5. (H 4 + OH 7 H= (-7- 3 + H20 1.60E+06 2.100 2460.
6. CH 20 + OH - HCO + H20 7.53E+12 0.000 167.
7. CH2 0 + H HCO + H2 3.31E+14 0.000 10500.
S. (H 2 0 + M- HCO + H + M 3.31E+16 0.000 81000.
9. CH 20 + 0 HCO + OH 1.81E+13 0.000 3082.
1). HCO + OH = CO + H,20 5.OOE+ 12 0.000 0.

11. HO + If H + CO + MI 1.60E+14 0.000 14700.
12. H(OO + H CO + H2 4.OOE+13 0.000 0.
13. HCO + 0 OH + CO I.OOE+13 0.000 0.

14. HO + 0, H02 + CO 3.OOE+12 0.000 0.
15. CO + 0 + .l 1 C02 + M 3.20E+13 0.000 -4200.
16. (00 + OH = 02 + H 1.51E+07 1.300 -758.
17. CO + 02 C02 + 0 1.60E+ 13 0.000 41000.
18. CH + 02 01'H30 + 0 7.OOE+12 0.000 25652.
19. (H,1O + .\1 CH20 + H + M 2.40E-13 0.000 28812.

20. CH0 + H ('1H20 + 112 2.OOE+13 0.000 0.
21. CHIjO + OH CH20 + H20 1.OOE+13 0.000 0.
22. (HO + 0 = ('H20 + OH I.OOE+13 0.000 0.
23. CH.,O + 02 = CH20 + H02 6.30E+1() 0.000 2600.
21. (0H:, + 0,-) ('H.20 + OH 5.20E+13 0.000 34574.

25. (HA + 0 = (H20 + H 6.80E+13 0.000 0.

26. CH, + OH ('H20 + H2 7.50E+12 0.000 0 .
27. 1102 + 0( -'02 + OH 5.80E+ 13 0.000 22934.
28. H. + 0-2 = 20H 1.70E+13 0.000 47780.
29. OH + H2 : H20 + H 1.17E+09 1.300 3626.
30. H + 0, 011 + 0 5.13E+16 -0.816 16507.

23



TABLE I. (continued)

Reaction Mechanism Rate Coefficients In The Form k! = AT9exp(-Eo/RT).
Units are moles, cubic centimeters, seconds, Kelvins and calories/mole.

REACTION A 0 E

31. 0 + H 2 == OH + H 1.80E+10 1.000 8826.
32. H + 02 + Ml -t H0 2 + Ma 2.10E+18 -1.000 0.33. H + 02 + 02=HO 2 + 02 6.70E+19 -1.420 0.

34. H + 02 + N2 -: H0 2 + N 2  6.70E+19 -1.420 0.
35. OH + H0 2  H 20 + 02 5.OOE+13 0.000 1000.
36. H + H0 2  20H 2.50E+14 0.000 1900.
37. 0 + H0 2  2 0+ OH 4.80E+13 0.000 1000.
38. 20H ; 0 + H20 6.00E+08 1.300 0.
39. H2 + M H + H + Mb 2.23E+12 0.500 92600.

" 40. 02 + M 0 + 0 + M 1.85E+11 0.500 95560.

41. H + OH + Al -- H 20 + Mc 7.50E+23 -2.600 0.

42. H + H0 2 - H2 + 02 2.50E+13 0.000 700.
43. HO 2 + HO 2 -- H202 + 02 2.00E+ 12 0.000 0.
44. H 20 2 + Al - OH + OH + M 1.30E+17 0.000 45500.
45. H20 2 + H H0 2 + H2 1.60E+12 0.000 3800.

46. H2 0 2 + OH == H20 + H02 1.00E+13 0.000 1800.

Third body efficiencies: ks(H 20) = 21ks(Ar), ks(H 2) = 3.3ks(Ar), ks(N 2) = k-(0 2 ) = 0.

.Third body efficiencies: k12(H 2 0) = 6kl 2(Ar), k12(H) = 2kl 2(Ar), k12(H 2 ) 31,'12(Ar).

Third body efficiency: k 14(H 20) = 20k 14 (Ar).
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Figure 1: Schematic illustration of a counterfiow flame.
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Figure 2: Comparison between the calculated flame sheet
temperature profile (dotted line) and the Icalculated finite rate
chemistry temperature profile (solid hune) in the double-jet
problem.
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Figure 3: Comparison between the calculated flame sheet
similarity function profile (dotted line) and the calculated
finite rate chemistry similarity functiol profile (solid line) in
the double-jet problem.
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Figure 5: Comparison between measured (o) and calculated
values (solid line) of the temperature profile.
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Figure 6: Comparison between measured CH4 (0). 02 (0)
and N2 (o) profiles and corresponding calculated values (solid
lines).
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Figure 7: Comparison between measured H2 0 (0), C0 2 (0),
H2 (+) and CO (o) profiles and corresponding calculated
values (solid lines).
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Figure 9: Calculated profiles of the trace reactive species and
radicals in the flame.
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Figure 10: Flame sheet temperature distribution in a two-
dimensional axisymlnetric diffusion flame.
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Figure 11: Flame sheet CH4 (mass fraction) distribution in
a two-dimensional axisymmetric diffusion flame.
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Figure 12: Flame sheet 02 (mass fraction) distribution in a
two-dimensional axisymmetric diffusion flame.
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Figure 13: Flame sheet H~20 (mass fraction) distribution in
a two-dimensional axisymmetric diffusion flame.
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~Figure 14: Flame sheet C02 (mass fraction) distribution in
i a two-dimensional axisymmetric diffusion flame.
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Figure 15: Velocity (vector) distribution in a two-dimensional
axisymmetric diffusion flame.
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Figure 16: Residuals plotted against number of function eval-
uations (approximately proportional to CPU time) for Plain
TEACH for the test problem on a 16 x 16 grid.
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Figure 17: Residuals plotted against number of function eval-
uations for NLGMR TEACH for the test problem on a 16x 16
grid.
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Figure 18: Residuals plotted against number of function eval-
uiations for TEA CH for the test problem on a 30 x 30 grid.
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NLGMR TEACH Convergence (30 by 30)
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Figure 19: Residuals plotted against number of function eval-
uations for NLGMR TEACHfor the test problem on a 30x 30
grid.
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